Uusimmat viestit

Uusimmat keskustelut

    • Mahtava kirja
    • Kirja: Varjo ja riipus (Grishaversumi, #1)
    • 1 kommentti (Iines 16 päivää sitten)
    • Kustantajat.
    • Kirja: Jäänvartija (Konetrilogia, #3)
    • karivaan 91 päivää sitten

Tulokseni pöllittiin ennen kuin olin itse keksinyt sen

  • punnort hahmo Kirjoittaja
  • punnort
    Riivaaja
    Taso: 42
  • Viestejä: 891
29.12.2019 14:09 #1 : punnort
Vaihteeksi tarina ihan oikeasta elämästäni...

Tulokseni pöllittiin ennen kuin olin itse keksinyt sen

Osana matematiikan väitöskirjaani minun piti yleistää erästä vanhaa tulosta eli todistaa se yleisemmässä tapauksessa kuin aikaisemmin oli tehty. Matematiikkaa osaaville lukijoille kerrottakoon, että minun piti yleistää tulos, että Cr-differentiaalimonistolla on Cr-triangulointi, reaalianalyyttisen tapaukseen eli todistaa, että reaalianalyyttisellä monistolla on reaalianalyyttinen triangulointi. Lukijan ei kuitenkaan tarvitse tämän tekstin ymmärtämiseksi ymmärtää yllämainittua matematiikkaa.

Cr-tulos on peräisin 1940-luvulta. Muissa tieteissä vanha tieto korvautuu uudella, mutta matematiikassa tieto kasautuu, toisin sanoen uusi tieto rakennetaan vanhan päälle, joten vanhatkin tulokset pätevät edelleen. Whitehead, tuloksen keksijä, oli kuitenkin kirjoittanut tuloksensa tavalla, jota nykymatemaatikot pitävät vanhentuneena. Tämä ei vaikuttanut tuloksen pätevyyteen, mutta teki Whiteheadin artikkelin lukemisesta vaikeaa nykymatemaatikoille. Niinpä Whiteheadin tulos yleensä luettiinkin Munkresin 1960-luvulla kirjoittamasta kirjasta, jossa esitystapa on moderni.

Kun väitöskirjan ohjaajani antoi minulle tehtävänannon, tajusin heti, kuinka yleistys pitää tehdä. Itse asiassa tehtävänantona oli tehdä yleistys hiukan heikommassa muodossa, mutta tajusin edellämainitun vahvan yleistyksen todistusperiaatteen heti. ''Ei tehtävänanto voi mitenkään olla noin helppo'', tuumin tuolloin. Ajattelin ymmärtäneeni jotain väärin enkä sanonut mitään ohjaajalleni.

Aloin sitten lukea Munkresin kirjaa ja tajusin vähitellen, että heti keksimäni muutokset kirjassa esitettyyn todistukseen tosiaan antavat reaalianalyyttisen moniston reaalianalyyttisen trianguloinnin. Olin ylpeä itsestäni. Olin keksinyt uuden tuloksen. Lahjakkaan matemaatikon on suht helppoa keksiä ja todistaa tuloksia, mutta kaikki helppo on jo tehty. Yleensä paljastuu, että tulos on jo keksitty aiemmin. Nyt kuitenkin olin ratkaissut ongelman, jonka ohjaajani oli esittänyt minulle aiemmin ratkaisemattomana.

Eräänä iltana olin myöhään matematiikanlaitoksen kirjastossa etsimässä materiaalia, joka liittyisi väitöskirjaani. Löysin kiinnostavan artikkelin, jonka oli kirjoittanut 80-luvulla japanilainen Shiota. Aloin lukea artikkelia ja tajusin, että Shiota oli tehnyt saman yleistyksen jonka minä olin keksinyt, mutta 20 vuotta aiemmin kuin minä. ''Varasti tulokseni 20 vuotta ennen kuin itse keksin sen'', muistan kironneeni. Soitin heti hädissäni ohjaajalleni - kello oli tosiaan jotain 11 illalla - ja tulimme siihen tulokseen, että väitöskirjassani olisi niin paljon muutakin uutta, että yksi vanha tulos ei sitä kaataisi.

Myöhemmin valmistelin konferenssiesitelmää tulevasta väitöskirjastani. Katsoin piruuttani artikkelia, jossa Whitehead oli alun perin triangulointituloksen esittänyt. Tajusin, että Whiteheadin todistus oli periaatteiltaan sama kuin minun yleistykseni ja Shiotan todistus. Whitehead ei vain maininnut sen toimivan myös reaalianalyyttisessä tapauksessa. Munkres oli siis kirjaa kirjoittaessaan muuttanut Whiteheadin todistusta niin, ettei Munkresin versio enää toiminut reaalianalyyttisessä tapauksessa. En voinut olla tuntematta vahingoniloa. Shiota, joka oli pöllinyt tulokseni 20 vuotta ennen kuin olin keksinyt sen, olikin saman tilanteen uhri, johon hän oli minut asettanut!

Kun sitten pidin konferenssiesitelmää, puolet yleisöstä oli japanilaisia matemaatikoita. Kun olin päässyt kohtaan, jossa olin kertonut Whiteheadin todistuksen olevan periaatteeltaan sama kuin Shiotan, japsit yleisössä alkoivat kohista. Ihmettelin, mitä tapahtuu. Lopulta yksi heistä kysyi: ''Do you think Shiota could have discovered it independently of Whitehead?'' Silloin tajusin, mistä kohinassa oli kyse. Japsit ajattelivat minun syyttävän maanmiestään plagioinnista.

''I did discover it independently of Whitehead and Shiota'', vastasin. ''So, yes, I think it is possible.''

Virtuaalinen pöytälaatikkoni:
fiktio.wikidot.com/

  • Rasimus hahmo
  • Rasimus
    Aavevelho
    Taso: 41
  • Viestejä: 828
04.01.2020 21:00 - 04.01.2020 21:07 #2 : Rasimus
Juuri tuollaisen takia koen rivipuurtamisen antoisampana kuin luovan RnD:n. Tyyliin "jos ei edes yritä, niin ei voi epäonnistuakaan".

Kumpikohan käy hermoille enemmän: Tuhlata aikaa ja vaivaa ja innostusta johonkin oivallukseen vain todetakseen, että se on jo tehty? Vai se, että keksii jonkun näppärän tavan tehdä jotain eikä pidä sitä mitenkään ihmeellisenä, vain huomatakseen että joku muu kymmenen vuotta myöhemmin saa nimensä Wikipediaan saman tavan keksimisestä (tai ainakin nimeämisestä)?

Btw. Olen itsekin kokenut, että vaikeat, aiemmin ratkaisemattomat koulutehtävät ovat oikeasti helppoja kunhan niihin vain perehtyy. Keksin siihen kaksi syytä: Joko muu oppilaskunta on odottamattoman tyhmää sakkia, tai sitten 99% muuten välkystä porukasta ei viitsi edes yrittää kun tehtävän kuvaus saa tehtävän kuulostamaan ns. rakettitieteeltä. Kumpi tahansa onkaan syynä, tehtävät säädetään tietenkin vaikeustasoltaan vastaamaan opiskelijoiden ratkaisuprosenttien tasoa, ei kykyjen tasoa.

(Alkuperäinen posti tosin on väitöskirjasta, joka on hieman eri asia, mutta ei niidenkään sisällöltä ihmeitä vaadita)

Eli kaikille opiskelijoille tiedoksi: Tarttukaa ihan rohkeasti noihin opettajien bonustehtäviin. Ne ovat loppujen lopuksi vain tiedon hankintaa ja soveltamista. Vaikka se opintopiste ei lohkeaisikaan, niin pelkkä yrittäminen kyllä opettaa jotain hyödyllistä.

It's a beautiful day to get rid of some radioactive waste
Viimeksi muokattu: 04.01.2020 21:07 Rasimus.

Valvojat: IivariDyn
Paikalla 4 jäsentä ja 52 vierailijaa
Fievre, Eija, Kuurankukka, Piru Naiseksi
Uusin jäsen: Taina Rytkönen
Jäseniä yhteensä: 8808